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ABSTRACT

An analysis was conducted of almost 5000 operational seasonal streamflow forecast errors across the western
United States. These forecasts are for 29 unregulated rivers with diversity in geography and climate. Deterministic
evaluations revealed strong correspondence between observations and forecasts issued 1 April. Forecasts issued
earlier in the season were more uncertain yet remained skillful. The average change in forecast performance
between January and April was primarily linked to the climatological seasonal cycle of precipitation: regions
with climatologically wet winters and dry springs (e.g., California) showed much more forecast improvement
between January and April than did regions with dry winters and wet springs (e.g., western Great Plains, Colorado
Front Range). Other climatological factors played a secondary role; for example, mixed rain–snow basins in
the Pacific Northwest did not show as significant an improvement in skill versus lead time as might otherwise
be expected. Mixed trends in 1 April forecast skill were noted since the 1980s, with increased skill in California
and Nevada, and a decline in skill in the Colorado River basin. Increased variability in streamflow was also
noted across most of the western United States, although this did not appear to be the only factor responsible
for trends in forecast skill.

1. Introduction

Effective management of limited water supplies is a
critical component of the sustainability of populations
throughout the western United States. Accurate fore-
casts of seasonal streamflow volumes assist a broad ar-
ray of natural resource decision makers. Forecasts with
lead times of several months are made possible by the
seasonal accumulation and melt of snowpack at mod-
erate and high elevations.

Such water supply outlooks (WSOs) are currently is-
sued jointly by the Natural Resources Conservation Ser-
vice (NRCS), the National Weather Service (NWS), and
local cooperating agencies (such as the Salt River Pro-
ject in Arizona). They predict the volume of streamflow
to pass by a designated point on a stream over a specific
period of time, for example, April–September.

NRCS forecasters rely on a statistical principal com-
ponents regression technique to predict future stream-
flow using information about current snow water equiv-
alent, fall and spring precipitation, base flow, and cli-
mate indices (Garen 1992). In addition, the NWS is

Corresponding author address: Thomas Pagano, National Water
and Climate Center, National Resources Conservation Service, 101
SW Main St., Suite 1600, Portland, OR 97204.
E-mail: tpagano@wcc.nrcs.usda.gov

increasingly engaged in dynamic simulation of stream-
flow by initializing a conceptual hydrological model
with current soil moisture and snowpack conditions and
forcing it with an ensemble of historical meteorological
series [ensemble streamflow prediction (ESP); Day
1985]. Human expertise also plays a role in the forecasts
from each agency.

Although forecast users are routinely interested in the
accuracy of the forecasts (Hartmann et al. 1999), a sys-
tematic investigation of the historical performance of
the forecasts across the western United States has never
been published in a peer-reviewed journal. This paper,
then, is an effort to fill this need by evaluating the of-
ficial WSOs for a select number of basins. It begins with
a discussion of the forecasts and data associated with
the evaluation. It then continues with a discussion of
forecast evaluation methodology, including a review of
previous seasonal streamflow forecast evaluation ef-
forts. Next, new evaluations are presented, with a focus
on identifying the sources of forecast error as well as
the most promising avenues toward forecast improve-
ment. Finally, conclusions are provided based on the
analysis herein.

2. Selection of basins
The U.S. Geological Survey (USGS) has collected

streamflow data at almost 10 000 sites across the western
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FIG. 1. Maps of (a) the western U.S. seasonal water supply forecast
locations as of 2002 and (b) the sites selected for this study.

United States (west of 1048 W longitude). Of these sites,
WSOs are currently issued for approximately 700 lo-
cations (Fig. 1a). These forecast points are generally
locations critical to water management operations, for
example, inflows to reservoirs or flows at key index
sites.

Many forecast points are regulated, in that the ob-
served streamflow is significantly altered by human ac-
tivity, such as irrigation diversions and reservoir re-
leases. Naturalization of streamflow values to remove
human influences is a difficult task, and even the best
efforts cannot completely remove all human effects. In
reality, there are differences between true natural flow
and unregulated flow data (which account for a limited
number of measured reservoirs and losses). As a result
of these complications, regulated streamflow locations
were avoided in this study (see also Dracup et al. 1985).

Forecasts in heavily regulated basins are expected to be
less skillful than forecasts in unregulated basins. The
difference in skill is likely to be inversely proportional
to the quality of the naturalized flow data and the extent
to which most of the regulations are accounted for.

Slack and Landwehr (1992) identified a subset of Hy-
dro-Climatic Data Network (HCDN) stream gauges as
being relatively free of significant human influences
and, therefore, appropriate for climate studies. In the
continental western United States, there are 481 such
points west of 1048 W longitude. Excluding Alaska, 151
of the HCDN gauges are currently water supply forecast
locations. All of the stream gauges chosen for this study
are HCDN locations.

The number of WSO forecast points has increased
dramatically over the years. In 1922, a limited set of
NRCS forecasts was available in California and Nevada.
After the mid-1930s, forecasts increased steadily, add-
ing a net of 11 forecast locations per year, on average.
To assess possible trends in forecast accuracy, a long
history of forecasts is necessary, limiting the number
of basins eligible for analysis. Generally, the selection
of basins for this study favored those with a continuous
record of forecasts and observations from 1955 to 2002,
with stream gauges that are still active today. One may
assume that basins with a long period of record of fore-
casts also have many years of historical streamflow and
snowpack data. Data-rich basins have better forecasts
than, for example, basins with less than 10 yr of his-
torical streamflow data, where it is difficult to estimate
the relationship between snowpack and future stream-
flow reliably. Although they are very rare, forecasts on
ungauged basins are the least reliable.

To ensure relatively complete geographic coverage
and a range of basin sizes and types, some basins with
shorter forecast records needed to be selected (e.g., the
Sandy River near Marmot, Oregon, 1971–2002). Alas-
kan forecasts were omitted because of their short period
of record and compressed forecasting season (i.e., they
are only issued in March, April, and May). Finally, the
number of basins chosen was limited by the resources
available to digitize the historical forecasts manually.
Table 1 details the characteristics of the 29 forecast
points used in this study, and their locations are shown
in Fig. 1b.

3. Data

a. Observed data

Monthly streamflow data for the 29 basins were ob-
tained from the USGS online database (available at
http://waterdata.usgs.gov/nwis/sw). These monthly val-
ues were aggregated into seasonal volumes correspond-
ing to the forecast target period for each basin. Missing
observed data were estimated in this study by linear
regression between the streamflow for the location of
interest and data from nearby stream gauges. Only 1.1%
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TABLE 1. Study basins and their characteristics. Latitude and longitude (decimal degrees) are the location of the USGS stream gauge.
Sites with italicized names are log transformed. Sites with bold target seasons have shrinking forecast target seasons.

USGS site name USGS code Lat 8N Lon 8W
Basin area

(km2)
Forecast target

season

Yellowstone River at Corwin Springs, MT
Clarks fork of Yellowstone River, MT
Tongue River near Dayton, WY
Pecos River near Pecos, NM
East River at Almont, CO

06191500
06207500
06298000
08378500
09112500

45.1
45.0
44.9
35.7
38.7

110.8
109.1
107.3
105.7
106.9

6794
2989

528
490
749

Apr–Sep
Apr–Sep
Apr–Sep
Mar–Jul
Apr–Sep

Green River at Warren Bridge, WY
White River near Meeker, CO
Animas River at Durango, CO
Lower Colorado above Lyman Lake, AZ
Virgin River at Littlefield, AZ

09188500
09304500
09361500
09384000
09415000

43.0
40.0
37.3
34.3
36.9

110.1
107.9
107.9
109.4
113.9

1212
1955
1792
1829

13 183

Apr–Sep
Apr–Sep
Apr–Sep
Jan–Jun
Apr–Jun

San Francisco River at Clifton, AZ
Salt River near Roosevelt, AZ
Verde River below Tangle Creek, AZ
Weber River near Oakley, UT
Beaver River near Beaver, UT

09444500
09498500
09508500
10128500
10234500

33.1
33.6
34.1
40.7
38.3

109.3
110.9
111.7
111.3
112.6

7164
11 153
15 175

420
236

Jan–May
Jan–May
Jan–May
Apr–Sep
Apr–Jul

West Walker River near Coleville, CA
Carson River near Fort Churchill, NV
Lamoille Creek near Lamoille, NV
Martin Creek near Pardise Valley, NV
Dungeness River near Sequim, WA
North fork of Flathead River near Columbia Falls, MT

10296000
10312000
10316500
10329500
12048000
12355500

38.4
39.3
40.7
41.5
48.0
48.5

119.5
119.3
115.5
117.4
123.1
114.1

469
3372

65
454
404

4009

Apr–Jul
Apr–Jul
Apr–Jul
Apr–Jul
Apr–Sep
Apr–Sep

Stehekin River at Stehekin, WA
Big Lost River at Howell Ranch, ID
Bruneau River near Hot Spring, ID
Malheur River near Drewsey, OR

12451000
13120500
13168500
13214000

48.3
44.0
42.8
43.8

120.7
114.0
115.7
118.3

831
1166
6812
2357

Apr–Sep
Apr–Sep
Mar–Sep
Apr–Sep

Salmon River at Whitebird, ID
Umatilla River near Gibbon, OR
Sandy River near Marmot, OR
Rogue River above Prospect, OR

13317000
14020000
14137000
14328000

45.8
45.7
45.4
42.8

116.3
118.3
122.1
122.5

35 094
339
681
808

Apr–Sep
Apr–Sep
Apr–Sep
Apr–Sep

of the observed streamflow data values needed to be
estimated, and, based on the strength of the correlation
coefficients of the regression equations, the estimated
values are likely to deviate less than 5% from the true
values. Therefore, the estimation procedure should not
have significantly affected the forecast evaluations. This
study assumed that the differences between the forecasts
and observations were entirely due to forecast error and
were in no part due to the quality of the observations.
The USGS considers that approximately 95% of their
daily discharge measurements are within 10% of the
true value.

Adjusted (unregulated) streamflow data were used
only at one location, the Tongue River near Dayton,
Wyoming. Although an HCDN location, significant di-
versions for irrigation occur during the summer months.
The accounted-for diversion (Highline Ditch near Day-
ton, Wyoming, USGS station number 06297500)
amounts to 3%–5% of the seasonal streamflow volume.
In the 28 other study basins, the NRCS currently cali-
brates its statistical forecast equations using observed
flow data, without any adjustments.

In section 5, the forecast skill improvement is related
to the climatological seasonal cycle of precipitation for
each of the basins. To support this analysis, spatially
distributed climatological average precipitation data
were obtained from the Parameter-Elevation Regres-
sions on Independent Slopes Model (PRISM) system.

This hybrid statistical–geographical approach blends in-
formation about topography and point estimates of pre-
cipitation from 1961 to 1990 to derive gridded fields of
average annual precipitation at a 4-km resolution for the
entire United States (Daly et al. 1994). The project was
funded and coordinated by the NRCS National Water
and Climate Center and is available on the Internet (on-
line at http://www.ftw.nrcs.usda.gov/prism/prism.html).

b. Forecast data

The 4841 historical forecasts used in this study were
drawn from a variety of existing sources. The primary
source of forecasts was paper versions of the historical
state ‘‘Basin Outlook Reports’’ and the ‘‘Water Supply
Outlook for the Western United States,’’ housed at the
NRCS National Water and Climate Center, from which
the values were manually digitized. Forecasts after 1990
were available in electronic versions of the same reports.
A secondary source of forecasts was the NRCS Forecast
Error Analysis Routine (FEAR) electronic database, as
used by Shafer and Huddleston (1984). Third, the Uni-
versity of Arizona’s Department of Hydrology maintains
an electronic archive of water supply forecasts for the
Colorado River basin, as they appeared in NWS pub-
lications. Finally, paper archives of the publication
‘‘Runoff Forecasts,’’ in the Western Construction News
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(1947–1954) were used to obtain a very limited number
of early forecasts.

The calibration errors of the NRCS water supply fore-
cast regression equations have been used to compute
the confidence intervals corresponding to 10%, 30%,
70%, and 90% exceedance probabilities associated with
the median (50% exceedance probability) forecasts.
These five probability bounds have appeared in NRCS
publications since 1989. Before 1986, only median fore-
casts were published. The publications also generally
included values for the historical (e.g., 30 yr) average
streamflow for each basin along with the median fore-
cast streamflow as a percent of the historical average.
For the remainder of this text, ‘‘forecast’’ will refer
exclusively to the median forecast. In some publications,
this value is referred to as the ‘‘most probable’’ forecast,
although this is not a statistically rigorous term and is
not the preferred terminology.

While the deterministic forecast is the focus of this
study, Blanchard (1955) and many others since have
demonstrated that an optimal decision maker, for ex-
ample, an irrigator or reservoir operator, gets more value
from a probabilistic forecast than a deterministic fore-
cast. The authors recognize this issue and believe that
the deterministic evaluation here is a positive first step
toward a fuller probabilistic evaluation. Given that the
forecasts were developed using statistical tools, and the
forecast distribution width was proportional to expected
forecast skill, a probabilistic evaluation should not paint
a radically different picture from this analysis. In com-
parison, simulation models have a well-known tendency
to produce overconfident forecasts with narrow forecast
distributions in part because they ignore model calibra-
tion and data errors (Barnston et al. 2003). Such over-
confidence would be penalized in a probabilistic eval-
uation.

Many forecast points had multiple target seasons. For
example, forecasters predicted the April–June, April–
July, and April–September flow volume for the Big Lost
River in Idaho to serve the needs of different users.
Before the 1950s, forecasts almost exclusively had a
target period of April–September—the period that cor-
responds to the irrigation and snowmelt season around
most of the western United States. In recent years, to
isolate the effects of the relatively unpredictable summer
monsoon, Colorado basin forecasts have been for April–
July. Other locations may begin snowmelt earlier, such
as the Pecos River in New Mexico, which had a forecast
target of March–July. Arizona forecasts were unique in
that the target period shrank throughout the season. In
January, the forecast target was January–May, in Feb-
ruary it was February–May, and so on until April–May.

For the purposes of this study, some forecasts’ target
seasons were changed by multiplying a forecast for a
different target season by the ratio of the long-term av-
erage flow for the target seasons, as published at the
time. For example, multiplying the April–September
forecast by the April–July long-term average and di-

viding by the April–September long-term average cre-
ates an estimated April–July forecast. This technique
was chosen because it preserved the forecast as a percent
of the average, and forecasters commonly developed a
forecast for one target period and applied the percent
of the average to the other periods. In some situations
in this study, concurrent averages for different periods
were not available, preventing such a transformation. In
these cases, the forecasts were estimated using regres-
sions between the observed streamflow values for the
various target periods, excluding the observed flow for
the year the forecast is being estimated. In a very limited
number of cases, a stream gauge had been permanently
moved to a nearby location within the basin, and these
forecasts were adjusted to remove the effect of changing
the gauge. Of the 4841 unique forecast values, 13% were
estimated by one of the means just described. Almost
half of the estimated values were on the Weber, Pecos,
and Beaver Rivers because of the changing target pe-
riods throughout their history. Of these target period
changes, that of the Pecos was the most uncertain, with
an R2 5 0.952 relationship between March–July and
April–September flows. When an estimated value ap-
peared obviously out of line with what a forecaster rea-
sonably would have issued, the forecast was listed as
missing.

In many instances, forecasts were cross-checked for
consistency among multiple sources. The most common
discrepancies were due to keying errors. Discrepancies
were resolved on a case-by-case basis, almost always
favoring the value that appears in a paper publication.
Based on the frequency of discrepancies discovered (and
corrected), the authors estimate that at least 99.6% of
the forecast values used in this study were identical to
the actual forecast. In the instances where forecasts from
the NRCS and NWS disagree, the NRCS forecasts were
used. Visual inspection of forecast and observation time
series and maps ensured that any remaining data entry
errors were not gross enough to affect the following
analysis significantly.

4. Forecast evaluation in the context of previous
studies

a. History of previous forecast evaluation studies

Although the water supply forecasting community has
long recognized the importance of forecast evaluation,
it has also long struggled to find appropriate forecast
evaluation measures. The challenge lies in normalizing
the forecast errors in some fashion so as to allow for
fair comparison between large rivers and minor creeks.
Additionally, one must find measures that are under-
standable and relevant to forecast users.

The early history of the NRCS water supply fore-
casting program in the 1930s–50s contains many eval-
uations of individual forecast locations and years (e.g.,
Paget 1940) similar to those put together for the informal
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water year–end summary meetings for users that still
occur today. Forecast bulletins as early as 1931 contain
tables of the previous year’s forecasts and observations,
and include a text discussion of the performance of the
forecasts. Very early evaluations aimed to establish the
credibility of the water supply forecasting enterprise.

In the earliest such evaluation, Church (1935) com-
puted the absolute difference between forecast and ob-
servation as a percent of long-term average runoff for
six basins in Nevada and California. The exceptional
result that two-thirds of the forecasts had an error of
less than 10% should be tempered by the fact that these
forecasts were issued on 15 May, the midpoint of the
spring melt period. Additionally, the standard deviation
of the observations in this region is typically one-third
of the average, indicating that a ‘‘no skill’’ forecast ev-
ery year equal to the long-term average might produce
errors of less than 10% one-fourth of the time.

In 1944, the NWS and the NRCS began publishing
forecasts independently for many of the same locations.
Pressure was put on the agencies to coordinate their
forecasting programs to prevent the duplication of effort
and to head off the problems that natural resource man-
agers would face when confronted with conflicting fore-
casts (e.g., Medford Mail Tribune, 8 February 1959).
The agencies could not agree on the best forecasting
method, with the NRCS favoring the use of snow survey
data, and the NWS favoring low-elevation accumulated
precipitation data. While efforts to institutionalize co-
ordination failed in 1956, regional pockets of coordi-
nation continued informally. Most forecast evaluations
between 1945 and 1960 were motivated by a desire to
show the superiority of the forecasts of one agency over
another.

Work and Beaumont (1958) performed a westwide
evaluation of NRCS and NWS forecasts, including three
tables of analysis arranged by state, basin, and year.
Forecast error was defined as the forecast flow divided
by the actual flow, expressed as an absolute difference
from 100% (after Work 1940). The authors also aver-
aged together the historical forecasts by the various
agencies to determine which agency would have ben-
efited by coordination. Finally, the authors presented
time series of which agency had the majority of ‘‘best’’
forecasts by year and a map of which agency performed
best overall at each location. In aggregate, NRCS fore-
casts were ‘‘better’’ than NWS forecasts 11 out of 13
yr of the evaluation. The NRCS forecasts were better
at 55% of the locations, although there was no obvious
spatial pattern to the performance of the agencies. The
authors concluded that snow survey data produce su-
perior streamflow forecasts, because snow is the primary
source of water in the western United States.

Kohler (1959), a chief research hydrologist of the
NWS, rebutted this study using a different graphical
evaluation technique that was in use by Soviet hydrol-
ogists at the time. First, the absolute difference between
each forecast and observation was expressed as a per-

centage of the range of the observations. These differ-
ences were ranked and plotted as a probability of non-
exceedance. A second curve was displayed based on the
differences between each observation and the long-term
mean, again as a percentage of the range of the obser-
vations. If desired, several curves based on the forecasts
from different agencies or lead times could have been
overlain and the performance compared (as was done
in CBIAC 1961, 1964). The area under each error curve
was a measure of forecast performance (with a small
area being good).

Although not necessarily intuitive to a user, this tech-
nique had many appealing aspects in that one could
visualize the distribution of errors as well as compare
the skill of the forecasts relative to a baseline (such as
climatology or always guessing average). While the for-
mulation was not exactly the same, the area between
the line for the performance of the forecasts and the
line for the performance of the long-term mean ap-
proached the spirit of the Nash–Sutcliffe coefficient of
efficiency (NS; Nash and Sutcliffe 1970). Using this
new forecast evaluation measure, Kohler concluded that
the NWS’s early season forecasts were far superior to
those issued by the NRCS, yet conceded that the dif-
ferences were slight later in the season.

A lull in forecast evaluation activities followed until
the 1980s. Forecast evaluations at individual locations
occurred in the research literature, oftentime to compare
the historical forecasts against new techniques being
developed. It was not until the work of Shafer and Hud-
dleston (1984) that a westwide look at water supply
forecast evaluation was revisited. Shafer and Huddles-
ton analyzed a database of close to 50 000 seasonal
streamflow forecast errors, representing the complete
history of NRCS forecasts (excluding those from Alas-
ka).

Following Church’s definition, as opposed to Beau-
mont and Work’s, Shafer and Huddleston calculated the
average forecast error for 345 forecast locations and
aggregated the results by state and lead time. As ex-
pected, the forecast error decreased as the lead time
decreased. They also found an exceptional relationship
(R2 5 0.966) between the statewide average forecast
error and the mean coefficient of variation (the ratio of
the standard deviation of the observed flow to the mean),
as had Lettenmaier and Garen (1979) in their analysis
of streamflow hindcasts several years earlier. In other
words, it was easy to incur a 100% forecast error on,
for example, the San Francisco River in Arizona, whose
observations varied between 17% of average to over
750% of average. It was more difficult to do so on a
river such as the Stehekin River in Washington, where
the streamflow ranged only between 60% and 150% of
average.

Shafer and Huddleston also employed a unique ‘‘skill
coefficient’’ score, the sum of the absolute differences
between the long-term average and the observation in
each year, divided by the sum of the absolute errors
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between the forecasts and observations. A score of 1.0
indicated no skill, and a score of 2.0 indicated that the
forecasts were twice as skillful as a climatology forecast.
Like Kohler’s work, this score was attractive because it
enabled a normalized comparison across states. The
analysis revealed that 1 April forecasts for the period
of record until 1980 were most skillful in Arizona and
Washington; fair in Nevada, Idaho, and Wyoming; poor
in Colorado, New Mexico, and Utah; and least skillful
in Oregon and Montana.

Shafer and Huddleston qualitatively attempted to de-
tect a westwide long-term change in skill, but none was
apparent. Individual sites were becoming more skillful,
others less skillful. The authors stated that the obser-
vations displayed a trend toward increasing variability,
and when one subtracted out this effect (based on the
above-mentioned analysis), average forecast error de-
creased ‘‘virtually’’ by 2.2% in 1966–80, compared to
1951–65, but decreased ‘‘actually’’ only 0.2%. In other
words, had the streamflow variability not increased re-
cently, the forecast error would have decreased by 2%
more than it actually did. Instead, the forecasters were
challenged with a more variable (hence, tougher to fore-
cast) sequence of flows than what occurred in earlier
years, and forecast skill suffered.

Schaake and Peck (1985) used a similar score, called
the error variance (1 2 NS), in an analysis of forecasts
during 1947–84 for the inflow to Lake Powell, on the
Colorado River in Utah. The authors decomposed the
errors into climate-, data-, and model-based error [Let-
tenmaier and Garen (1979) explored this issue further].
The motivation of the study was to determine the most
lucrative avenue for improving streamflow forecasts.
Climate-based errors could be addressed by having ac-
curate seasonal forecasts of precipitation and tempera-
ture. Data-based errors are rooted in the density of the
data-monitoring network, location of sites, and the qual-
ity of the data. Improving forecast tools and techniques
could reduce model-based errors. Schaake and Peck
concluded that almost 80% of the 1 January forecast
error was due to the unknown future climate; by 1 April,
future climate still accounted for more than 50% of the
forecast error. On 1 April, model and data errors were
approximately equal and were steady throughout the
season.

While water supply forecast evaluation ceased after
the mid-1980s, the climate and weather forecasting com-
munities reached new heights of complexity in forecast
evaluation. Long-lead climate forecasts were originally
issued categorically, for example, ‘‘above normal,’’ and
the community has no less than 19 categorical evalu-
ation measures at their disposal, with the Heidke skill
score (Heidke 1926) as being the most popular in op-
erational circles. With the transition to probabilistic cli-
mate forecasts in the 1980s, probabilistic forecast eval-
uation scores, such as the Brier score (Brier 1950) and
ranked probability score (Epstein 1969), gained popu-
larity. The most sophisticated evaluations involve dis-

tribution-oriented approaches (reliability and discrimi-
nation diagrams, Wilks 1995) and measures of the value
of the forecasts to a theoretical optimal decision maker.
Regrettably, the robustness and scientific rigor of fore-
cast evaluation techniques are inversely proportional to
their accessibility and understandability by the lay fore-
cast user. The current challenge is in linking the forecast
evaluation to the user in a meaningful and relevant man-
ner (Hartmann et al. 2002).

b. Current forecast evaluation

Although past NRCS forecast evaluations focus on
the average percent error, and this measure is the most
easily understandable by users, this study did not use
it. It primarily measures the local variability of the ob-
servations and not the value added by the forecaster.
Instead, the forecasts were judged by the NS score:

N

2( f 2 o )O i i
i51NS 5 1 2 , (1)N

2(o 2 o )O i
i51

where f i and oi are the forecast and observations in year
i for a collection of N years, and ( ) is the mean of theo
observations of N years. An NS of 1 is perfect, 0 in-
dicates no skill over the always guessing average, and
values less than 0 mean negative skill. In essence, this
score is one minus the mean squared error of the fore-
casts divided by the variance of the observations. It is
important to note that this skill score already accounts
for changes in the forecast skill associated with changes
in the variability of observations. During periods of high
variability, the potential for greater forecast error is off-
set by increased error in the ‘‘no skill’’ baseline forecast
of the guessing average.

Although not necessary, it is useful to avoid situations
of heteroscedastic error, such as where the forecast error
is typically greater during high flows than low flows.
Among those locations where the seasonal flow volumes
have skewness greater than 1.0, the natural logarithm
is applied to the forecast and observed seasonal totals
before analysis (see Table 1). Otherwise, individual
large floods would dominate the analysis, resulting in
an evaluation reflecting the behavior of the streamflow
in a few years rather than the quality of the forecaster
on the whole. For example, the 1 January 1993 squared
forecast error for the San Francisco River in Arizona
was almost 110 times the median squared forecast error
over the period of record even though it was, by far,
the wettest forecast ever issued for this location. Instead,
analysis of log-transformed flows provides more infor-
mation about the performance of forecasts across a
range of streamflow conditions. In this study, the trans-
formation increased the skill scores (e.g., San Francisco
River January NS was 0.64 if the data were transformed,
and 0.54 if not). This transformation shifted the forecast
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FIG. 2. Skill of 1983–2002 water supply forecasts issued (top) 1
Jan and (middle) 1 Apr. (bottom) Forecast improvement between Jan
and Apr is shown. Large filled circles indicate high skill or great
improvement.

evaluation emphasis to drought, which is the primary
concern of NRCS agricultural customers in semiarid
regions (as opposed to NWS customers concerned with
the protection of lives and property from floods). Fur-
ther, droughts (FEMA 1995) cause approximately 3–4
times the annual economic damages of floods (Myers
1997), and, therefore, any impact-oriented forecast eval-
uation may prefer to give more emphasis to performance
during dry years. Although this study did not attempt
to link forecast accuracy to user benefits, the log trans-
formation of skewed flows increased the user relevance
of the evaluation.

5. Evaluations

The evaluation of the historical forecasts as a function
of location and lead time is presented below. Changes
in skill over the period of record were investigated,
although quantitative detection or diagnosing of trends
in forecast performance were not attempted. A limited
number of factors that shaped forecast performance in
a general sense were identified and examined, with ex-
amples from individual years.

a. Forecast lead time

Figures 2a–c are maps of the NS score for the fore-
casts issued in the most recent 20 yr, 1983–2002. The
top and middle maps indicate the performance of the
forecasts issued on 1 January and 1 April, respectively.
The size of the circle reflects the skill of the forecasts,
large being preferable over small. The outermost circle
is a reference to perfect skill, and an empty circle in-
dicates zero skill. The hollow circle over the Sandy
River in Oregon in the top panel indicates that 1 January
forecasts had a slightly negative skill. The bottom panel
reflects the change in forecast performance (NS) be-
tween 1 January and 1 April. Large inner circles indicate
great forecast improvement, and the hollow circle in
Arizona shows a decline in skill for the Verde River in
Arizona, 1 April forecasts compared to those issued on
1 January. The outer circle is a reference for a change
in NS equal to 1.0.

During 1983–2002, the most skillful 1 April forecasts
were issued for the Salt River in Arizona, West Walker
River in California, and Little Colorado River in Ari-
zona, whereas the least skillful forecasts were for the
Umatilla River in Oregon, White River in Colorado, and
Sandy River in Oregon. The most improvement in skill
between January and April occurred for the West Walker
River in California, Carson River in Nevada, and Martin
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FIG. 3. Box diagram of forecast skill versus issue month for the
29 basins during 1983–2002. The box has lines at the lower-quartile,
median, and upper-quartile values. Individual sites outside this range
are shown as dots.

Creek in Nevada, and the least improvement occurred
for the Verde River in Arizona, Animas River in Col-
orado, and White River in Colorado. The westwide av-
erage NSs in January through April from 1983 to 2002
were 10.36, 10.53, 10.59, and 10.65, respectively.

Figure 3 shows the westwide average forecast skill
versus issue month. Skill was lowest but generally pos-
itive in January and steadily improved throughout the
season. This result is intuitive in that in January the
character of the seasonal precipitation has yet to reveal
itself. For many locations in the western United States,
snowpack is at its peak on or around 1 April, and there
are fewer opportunities for dramatic changes in the
amount of available water in the basin.

This is not to say that significant changes cannot occur
after 1 April. A notable example of this occurred in the
Colorado River basin in 1983 (Rhodes and Dracup
1984). Until April 1983, snowpack was near average,
and the median forecasted inflow to Lake Powell was
similarly near average (109%). An exceptionally cold
and wet spring ensued, followed by a rapid warming.
The observed April–July flow, at over 210% of average,
overwhelmed the already full reservoir system. Perhaps
a less well known example, the Animas basin, had ex-
tremely low snowpack on 1 April 1999 after an excep-
tionally warm March, and the median streamflow fore-
cast was approximately 40% of average. Near-record
rain fell in April–May, and the snowmelt pulse volume
was near to above average. A monsoon of unprece-
dented strength, however, produced summer floods.
April–September streamflow totals were close to 140%
of average. Although not one of this study’s basins,
Ponil Creek near Cimarron, New Mexico (USGS station

number 07207500), to the southeast, had a forecast of
20% of average in the same year, and the eventual
March–June flow was over 370% of average. The five
largest 1 April errors in the database, defined as the
squared difference between the forecast and observed,
divided by the long-term observed variance, were (be-
ginning with the largest first) as follows: Animas River
in Colorado, 1999; Verde River in Arizona, 1988; Sandy
River in Oregon, 1981; Bruneau River in Idaho, 1963;
and East River in Colorado, 1957. These were all due
to low snowpack conditions followed by exceptional
storms.

While these examples represented large underfore-
casts, causes for overforecasts tended to be more com-
plex. The two largest forecast overestimates (Yellow-
stone River in Montana, 1949; Weber River in Utah,
1936) were due to moderate snowpack being followed
by hot, dry, windy weather. The Lamoille River in Ne-
vada, 1943 error, however, was a collision of factors.
In this case, forecasters overestimated the effects of a
high water table, and this very small high-elevation ba-
sin seemed to be in a dry microclimate surrounded by
heavy snows. The streamflow data were also question-
able because a series of floods had recently occurred,
possibly affecting the instruments and rating table
(Church and Boardman 1944).

Forecast error in any given year is strongly related
to the character of precipitation that falls subsequent to
the forecast issue date. For example, a basinwide time
series of spring and summer precipitation explained
more than 60% of the interannual variance in the 1 April
forecast errors at the Weber River in Utah (Pagano
2004). Similarly, one might expect the average increase
in forecast skill between January and April to be pro-
portional to the percentage of precipitation that typically
falls in January, February, and March. The following
analysis determined if the operational forecasts dis-
played this characteristic.

The stream gauge coordinates and a 1-km digital el-
evation model (HYDRO1k; see information online at
http://edcdaac.usgs.gov/gtopo30/hydro/namerica.asp)
were used within a geographic information system to
delineate the 29 basins of this study. The long-term cli-
matological average PRISM precipitation for each month
was calculated within each basin’s boundaries. The Jan-
uary–March total precipitation was then divided by the
total seasonal average precipitation, beginning in Janu-
ary. For example, if the water supply forecast target sea-
son was April–September, ‘‘seasonal precipitation’’
meant January–September (or January–July if the target
season was April–July). A high value indicated that a
large portion of the streamflow-relevant precipitation typ-
ically fell in January–March, and the spring was a cli-
matologically dry period. A moderate value (;40%) in-
dicated a relatively flat seasonal cycle to precipitation,
and a very low value indicated that most precipitation
tended to fall in the spring and summer. Arizona rivers
were withheld from this analysis, because their target
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FIG. 4. Forecast skill improvement between Jan and Apr 1983–
2002, as a function of the climatological average Jan–Mar precipi-
tation, relative to the full seasonal (Jan through the end of the forecast
target period) precipitation. See text for explanation of symbols.

period shrank as the season progressed, and a smaller
target was not necessarily easier to hit.

The strength of the correlation between average fore-
cast improvement and the climatological cycle of pre-
cipitation in Fig. 4, as expected, was relatively strong
(R2 5 0.41). The river with the greatest improvement
in skill between January and April was the West Walker
River in California, because 46% of the annual precip-
itation falls in January–March, compared to only 17%
that falls in April–July. In comparison, the Tongue River
in Wyoming showed little improvement in skill by April,
in part because April–June in the Plains states is usually
the wettest time of year. The Animas River in Colorado
showed the least improvement of any basin outside Ar-
izona due to the aforementioned 1999 event and because
the basin is under the influence of the summer monsoon;
the recent operational switch of forecast target periods
from April–September to April–July may address some
of this problem. The outlier (filled triangle) in the upper
left corner of the diagram is the Bruneau River in Idaho;
as the target season began in March, observed March
flow for this location was known in real time. On 1
April, the forecaster was given an artificial advantage
because part of the target season was in the past and,
therefore, known with complete confidence.

The other exceptions to this rule, in the lower right
corner of the diagram as hollow circles, were the four
rivers in Oregon that did not improve as much as ex-
pected versus lead time. Most snowmelt-dominated ba-
sins around the western United States have a strong
seasonality in streamflow, with low base flow from Sep-
tember to March, a rise in late spring, a peak in summer,
and recession in the fall. For the East River, only 5%

of the January–September streamflow typically occurs
in January–March. In contrast, Oregon basins experi-
ence a mix of rain and snow and display ‘‘peaky’’ hy-
drograph behavior during the winter. On average, 47%
of the January–September flow on the Sandy River typ-
ically occurs in January–March (43%, 42%, and 37%
for the Umatilla, Malheur, and Rogue Rivers, respec-
tively). It is possible for a large snowpack in February
to be wasted away by March rains and run off before
the April–September forecast target period begins. For
example, on 1 February 1996, the Sandy River water-
shed had a near-average snowpack and near-average
streamflow forecasts. Warm temperatures and heavy
rains caused major flooding and resulted in February’s
streamflow being 260% of average. By 1 April, the
snowpack was 50%–60% of average, and the eventual
April–September flow was among the driest third of
record. The special challenge of seasonal streamflow
forecasting in Oregon is evident.

b. Trends in forecast skill

Not only are operational agencies under pressure to
use scientifically sound judgement to avoid large fore-
cast errors, they are also under pressure to assess the
value of the forecasts and to display improvements in
skill associated with the adoption of new technology.
Unfortunately, this is not necessarily an easy task. For
example, in the context of discussions of changes in
forecast skill, Lettenmaier (1984) deflated hopes of mea-
suring the expected 6% increase in forecast accuracy
(and the multimillion dollar annual benefit to the econ-
omy) associated with satellite snow cover information.
Lettenmaier showed that it would take more than half
a century to accumulate enough forecasts to detect such
a small accuracy trend with confidence. Mindful of the
concerns about the decades of forecasts necessary to
detect small changes in skill, this study found mixed
trends similar to those of Shafer and Huddleston (1984).

For each location, the NS was evaluated for forecasts
of various lead times within a 20-yr moving window.
Some locations (Figs. 5a–b), such as the Big Lost River
in Idaho, displayed monotonic improvements in forecast
skill, whereas other locations, such as the Pecos River
in New Mexico, experienced recent drops in skill (the
Pecos peaked in 1966–85). Most basins had slowly im-
proving forecasts until one or two major forecast anom-
alies ruined the moving average forecast performance.
For example, forecast errors in 1983 and 1999 domi-
nated much of the recent analysis in the upper Colorado
River basin.

Figure 6 shows the westwide average performance of
the forecasts as a function of lead time. April forecasts
improved through the early part of the record, reached
a relative maximum in the 1970s, and declined shortly
after. Longer lead time forecasts steadily improved
throughout the period of record.

One might suspect that the downward trend in late-
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FIG. 5. Evolution of forecast skill over time, as measured within
a 20-yr moving window for various forecast issue months (legend
shown in lower left).

FIG. 6. Westwide 20-yr moving average forecast skill versus year
and issue month (see legend lower left). At least 6 of the 29 basins
must have valid data for a value to be shown.

FIG. 7. The 1 Apr forecast skill anomalies by location versus year. Large hollow circles are preferable over large filled
circles.

season skill was artificial. The average in the early part
of the record could have been high because of the in-
clusion of high-skill basins with a long period of record,
such as that of the Walker and the exclusion of low-
skill basins such as that of the Sandy River. To evaluate

this possibility, each site’s 20-yr moving window NS
for 1 April was normalized into an anomaly: N 5S9i
NSi 2 , where was the average of the movingNS NS
window NS values over the period of record. This trans-
formation facilitates easy comparison of relative trends
in skill across sites. These anomalies are displayed in
Fig. 7. The start year of the 20-yr moving window is
on the x axis, whereas the site number from Table 1 is
on the y axis. At each location and period, an empty
circle indicates a positive skill anomaly, meaning that
performance at the location during this period was better
than other periods in this site’s history (a ‘‘streak’’). A
filled circle denotes a negative anomaly or performance
worse than other times in the past (a ‘‘slump’’). The
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FIG. 8. Maps of (top) 1961–80 and (bottom) 1981–2000 1 Apr
forecast skill anomalies. Large hollow circles are preferable over large
filled circles.

size of the circle reflects the magnitude of the anomaly,
with a larger circle meaning a greater magnitude. Figure
8 is a map of 1 April forecast skill anomalies for 1961–
80 (top) and 1981–2000 (bottom). As with Fig. 7, large
filled circles indicate a slump in performance.

Forecasts in California, Nevada, and southern Idaho
(sites 16–19 and 23–24) performed relatively poorly
from the 1940s to the mid-1980s, after which time fore-
cast skill was at its greatest of any time in the past.
Many other sites, however, had a relatively high skill

during the 1950s–80s and a decline afterward. This de-
cline was most pronounced in the Colorado River basin
(sites 5–8) and Arizona (sites 9–13). Across the western
United States, the period 1968–87 marked a relative
high point in forecast skill, with 26 of the 29 sites used
in this study reporting positive NS anomalies (skill high-
er than other periods). Less than 10 yr later, 1980–99
marked a relative low point in modern forecast skill,
with only 10 of 29 sites reporting positive NS anomalies.
Skill climbed modestly since, with 13 sites reporting
positive scores during 1983–2002. Therefore, the down-
ward trend in 1 April skill in Fig. 6 was not artificial
and was not an artifact of mixing forecast time series
of different lengths.

Without complete metadata about changes in forecast
procedures and data collection, it is difficult to diagnose
the trends in forecast skill. The recent decline in skill
coincided with many changes in the forecasting envi-
ronment. The early 1980s saw a major restructuring of
forecast facilities within the NRCS, from being state
based to being centrally located (Barton 1983). The
NRCS forecasting staff in 2003 was only one-third of
its size in 1980. Garen (1992) developed a significantly
different statistical forecasting technique that found
wide use after the early 1990s. Some NWS offices
adopted seasonal simulation modeling of streamflow
and the ESP system in the late 1970s.

The automation of snow courses was phased in over
the 1980s with the advent of the Snow Telemetry (SNO-
TEL) network, which was an improvement but also a
discontinuity in data collection technology. Changes in
land use, small water impoundments, and undocumented
diversions could have affected the future representa-
tiveness of historical flow. It is unknown whether the
current snow-based forecasting equations are represen-
tative under a climate that is warming and oscillating
on decadal time scales. The forecasts were objectively
based initially, but the published values were oftentimes
adjusted using nonquantifiable and nonreproducible hu-
man professional judgment. Both the statistical proce-
dures and the human operators changed over the history
of forecasting, as will they change in the future (al-
though it would be misguided to ascribe a significant
rise or fall in skill to an individual person, given the
many parties involved with creating a forecast). Some,
all, or none of these factors may have shaped how fore-
cast skill evolved recently. Preliminary analysis (not
shown) pointed to climate variability as the most influ-
ential factor on skill trends, while snow data quality had
secondary importance. The changes in human forecast-
ers or forecasting technology had small, if at all de-
tectable, effects on skill trends. This issue is explored
further in Pagano (2004).

c. Trends in streamflow variability

Researchers have postulated that streamflows may be-
come more variable under climate change, with an in-
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FIG. 9. Time series of moving window–observed streamflow variability. Compare with Fig. 7. Circles indicate more variability than the
period of record, dots indicate less variability. Variability declines significant at the p 5 0.1 level are crosses, and statistically significant
variability increases are shown as filled circles.

creasing frequency of high and low flows (Trenberth
1999). The operational community expects forecast skill
to decrease as streamflow variability increases; for ex-
ample, Shafer and Huddleston (1984) indicated that
streamflows had become more variable, and this masked
improvements in average forecast error. The reader is
reminded, however, that the evaluation skill score used
in this study is already normalized by the variability of
the observations, so this explanation for recent declines
in forecast skill does not seem to be sufficient.

Nonetheless, Fig. 9 shows the trends in forecast target
period streamflow variability versus time. The ratio of
the local 20-yr variance to the period of record variance
after 1900 is plotted. A dot indicates a ratio less than
one, namely periods of relatively low variability. Cross-
es are plotted where the ratio passes a variance F test
at p 5 0.1 (i.e., the decline was statistically significant).
Increased variability is shown as circles, and statistically
significant variability increases are filled circles. The
threshold for statistical significance varied by location
but was generally in the range of variance less than 60%
or greater than 150% of the period of record variance.
Figure 10 shows this information in map form for 1961–
80 (top) and 1981–2000 (bottom). Shown is the ratio
of the variance of flows in the 20-yr period compared
to the period of record. Symbols pointing upward in-
dicate where variance increased, and those pointing
downward are where variance decreased. If the symbol
is filled the change was statistically significant.

During the period 1945–1964, all but one of 29 sites
across the western United States had less variability than
the period of record, 10 sites significantly so. Over
1971–90, 27 of 29 sites were more variable than their
period of record. For the most recent 20 yr, 24 of 29
sites were more variable. This peak in variability was
focused in the intermountain western United States, cen-
tered on California, Nevada, southern Idaho, and the
northern half of the Colorado River basin. When using
a skill score that normalizes by variability in the ob-
servations, it is difficult to attribute downward trends
in forecast skill to recent increases in observed vari-
ability. In the Great Basin (the closed basins of Nevada
and western Utah) and California, both forecast skill
and streamflow variability have risen. In the Colorado
River basin, streamflow variability rose, but forecast
skill declined. This analysis did not account for changes
in springtime precipitation variability or the autocor-
relation between winter and spring precipitation, which
may have affected 1 April forecast skill. For example,
Pagano (2004) found that the recent forecast skill de-
clines resembled, in time and space, the unprecedented
rise in interannual variability in spring/summer precip-
itation in the Southwest and Pacific Northwest since the
mid-1980s.

6. Conclusions
This study analyzed the operational seasonal water

supply forecasts for a diverse set of basins evenly dis-



908 VOLUME 5J O U R N A L O F H Y D R O M E T E O R O L O G Y

FIG. 10. Observed streamflow variance for (top) 1961–80 and (bot-
tom) 1981–2000 as a ratio of the period of record variance. See text
for symbol definitions.

tributed around the western United States. For the most
recent 20 yr, all of the basins had skillful 1 April fore-
casts, and all but one basin had skillful 1 January fore-
casts. This suggests that forecasters may be able to pro-
duce skillful forecasts before 1 January for a subset of
basins. This advancement is technically feasible because
sufficiently long records of pre-January snow data are
now available through the SNOTEL network, and cred-
ible seasonal climate forecasts and indices now exist.

This study found that the increase in skill between
January and April was directly related to the proportion
of seasonal precipitation that typically falls in January–

March. Therefore, regions such as California, with rel-
atively compressed precipitation seasons, saw dramatic
increases in forecast skill between January and April.
The exceptions to this rule were mixed snow–rain basins
in the Pacific Northwest. Even if January–March typi-
cally accounted for a large percentage of the seasonal
precipitation, if winter streamflow was a significant por-
tion of the annual streamflow, seasonal skill improve-
ment was diminished.

Therefore, a measure of expected forecast skill could
be derived from climatological parameters and com-
pared with the jackknife calibration error of the fore-
casting equation to detect possible overfitting. The jack-
knife technique involves calibration of an equation on
all but one historical year of data and then using the
equation to predict the single year that was removed.
This process is repeated leaving out each historical year
in turn until a full set of predictions is obtained. The
jackknife approach usually provides a reliable estimate
of expected operational forecast skill unless too few
years are used in the calibration.

Trends in forecast skill were noticed in both absolute
and relative terms. At this time it is difficult to diagnose
the cause for the relative maximum in westwide forecast
skill from the 1950s to the 1970s, the decline in skill
that followed, and the recent trend toward recovery.
While streamflow variability rose across the western
United States, the spatial pattern of changes in vari-
ability and changes in skill did not completely match.
Specifically, forecast skill declined in the Colorado Riv-
er basin and Arizona since the 1980s. Skill increased
in California, Nevada, and western Utah, yet, stream-
flow variability increased over the same period for al-
most every western U.S. basin between northern Ari-
zona and central Idaho. Future research may reveal the
underlying causes for the changes in forecast skill, such
as the recent rise in spring precipitation variability or
the impacts of regional warming on the relationship be-
tween snowpack and subsequent streamflow.
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